Proton currents constrain structural models of voltage sensor activation
نویسندگان
چکیده
The Hv1 proton channel is evidently unique among voltage sensor domain proteins in mediating an intrinsic 'aqueous' H+ conductance (GAQ). Mutation of a highly conserved 'gating charge' residue in the S4 helix (R1H) confers a resting-state H+ 'shuttle' conductance (GSH) in VGCs and Ci VSP, and we now report that R1H is sufficient to reconstitute GSH in Hv1 without abrogating GAQ. Second-site mutations in S3 (D185A/H) and S4 (N4R) experimentally separate GSH and GAQ gating, which report thermodynamically distinct initial and final steps, respectively, in the Hv1 activation pathway. The effects of Hv1 mutations on GSH and GAQ are used to constrain the positions of key side chains in resting- and activated-state VS model structures, providing new insights into the structural basis of VS activation and H+ transfer mechanisms in Hv1.
منابع مشابه
Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملVoltage-Dependent Proton Transport by the Voltage Sensor of the ShakerK+ Channel
In voltage-dependent ion channels, pore opening is initiated by electrically driven movements of charged residues, and this movement generates a gating current. To examine structural rearrangements in the Shaker K+ channel, basic residues R365 and R368 in the S4 segment were replaced with histidine, and gating currents were recorded. Changes in gating charge displacement with solvent pH reveal ...
متن کاملDo Hyperpolarization-induced Proton Currents Contribute to the Pathogenesis of Hypokalemic Periodic Paralysis, a Voltage Sensor Channelopathy?
An increasing number of human diseases have been found to result from mutations in ion channels, including voltage-gated cation channels. Though the mutations are known, the pathophysiological mechanisms underlying many of these channelopathies remain unclear. In this issue of the Journal, Struyk and Cannon (see p. 11) provide evidence for a novel mechanism, proton movement catalyzed by the vol...
متن کاملHistidine Scanning Mutagenesis of Basic Residues of the S4 Segment of the Shaker K+ Channel
The voltage sensor of the Shaker potassium channel is comprised mostly of positively charged residues in the putative fourth transmembrane segment, S4 (Aggarwal, S.K., and R. MacKinnon. 1996. Neuron. 16:1169-1177; Seoh, S.-A., D. Sigg, D.M. Papazian, and F. Bezanilla. 1996. Neuron. 16:1159-1167). Movement of the voltage sensor in response to a change in the membrane potential was examined indir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2016